EconPapers    
Economics at your fingertips  
 

Invariant Coordinate Selection and Fisher Discriminant Subspace Beyond The Case of Two Groups

Colombe Becquart, Aurore Archimbaud, Anne Ruiz-Gazen, Luka Prilé and Klaus Nordhausen
Additional contact information
Colombe Becquart: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Aurore Archimbaud: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Anne Ruiz-Gazen: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Luka Prilé: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Klaus Nordhausen: JYU - University of Jyväskylä

Working Papers from HAL

Abstract: Invariant Coordinate Selection (ICS) is a multivariate technique that relies on the simultaneous diagonalization of two scatter matrices. It serves various purposes, including its use as a dimension reduction tool prior to clustering or outlier detection. Unlike methods such as Principal Component Analysis, ICS has a theoretical foundation that explains why and when the identified subspace should contain relevant information. These general results have been examined in detail primarily for specific scatter combinations within a two-cluster framework. In this study, we expand these investigations to include more clusters and scatter combinations. The case of three clusters in particular is studied at length. Based on these expanded theoretical insights and supported by numerical studies, we conclude that ICS is indeed suitable for recovering Fisher's discriminant subspace under very general settings and cases of failure seem rare.

Keywords: Dimension reduction; Simultaneous diagonalization; Mixture of elliptical distributions; Scatter matrix; Subspace estimation (search for similar items in EconPapers)
Date: 2025-12-18
Note: View the original document on HAL open archive server: https://hal.science/hal-05423125v1
References: Add references at CitEc
Citations:

Downloads: (external link)
https://hal.science/hal-05423125v1/document (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05423125

Access Statistics for this paper

More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().

 
Page updated 2025-12-30
Handle: RePEc:hal:wpaper:hal-05423125