Constrained deep learning for pricing and hedging european options in incomplete markets
Apprentissage profond contraint pour l'évaluation et la couverture d'options européennes en marchés incomplets
Nicolas Baradel ()
Additional contact information
Nicolas Baradel: ASCII - Analyse d’interactions stochastiques intelligentes et coopératives - CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique - Centre Inria de l'Institut Polytechnique de Paris - Centre Inria de Saclay - Inria - Institut National de Recherche en Informatique et en Automatique, CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - Inria - Institut National de Recherche en Informatique et en Automatique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique
Working Papers from HAL
Abstract:
In incomplete financial markets, pricing and hedging European options lack a unique no-arbitrage solution due to unhedgeable risks. This paper introduces a constrained deep learning approach to determine option prices and hedging strategies that minimize the Profit and Loss (P&L) distribution around zero. We employ a single neural network to represent the option price function, with its gradient serving as the hedging strategy, optimized via a loss function enforcing the self-financing portfolio condition. A key challenge arises from the non-smooth nature of option payoffs (e.g., vanilla calls are non-differentiable atthe-money, while digital options are discontinuous), which conflicts with the inherent smoothness of standard neural networks. To address this, we compare unconstrained networks against constrained architectures that explicitly embed the terminal payoff condition, drawing inspiration from PDE-solving techniques. Our framework assumes two tradable assets: the underlying and a liquid call option capturing volatility dynamics. Numerical experiments evaluate the method on simple options with varying non-smoothness, the exotic Equinox option, and scenarios with market jumps for robustness. Results demonstrate superior P&L distributions, highlighting the efficacy of constrained networks in handling realistic payoffs. This work advances machine learning applications in quantitative finance by integrating boundary constraints, offering a practical tool for pricing and hedging in incomplete markets.
Date: 2025-12-15
Note: View the original document on HAL open archive server: https://hal.science/hal-05477426v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-05477426v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05477426
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().