Scalar-on-distribution regression for assessing the impact of climate change on rice yield in Vietnam
Thi Huong Trinh,
Christine Thomas-Agnan and
Michel Simioni
Additional contact information
Thi Huong Trinh: Unknown
Christine Thomas-Agnan: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Michel Simioni: TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Working Papers from HAL
Abstract:
In econometrics, the impact of climate change on agricultural yield has often been modeled using linear functional regression, where crop yield, a scalar response, is regressed on the temperature distribution over a given time period, treated as an ordinary functional parameter, along with other covariates. We explore alternative models that respect the distributional nature of the temperature distribution parameter. Replacing functional observations with the corresponding distributional ones is appropriate for phenomena that are insensitive to the temporal order of events. Since classical addition and scalar multiplication are unsuitable for density functions, alternative operations and spaces are required. Moreover, compositional data analysis suggests that such covariates should undergo appropriate log-ratio transformations before inclusion in the model. We compare a discrete approach, where temperature histograms are treated as compositional vectors, with a smooth scalar-on-density regression using a Bayes space representation of temperature densities. We evaluate the strengths of each method in modeling rice yield in Vietnam, using data on daily temperature extremes. Additionally, we propose modeling climate change scenarios with perturbations
Keywords: Compositional Scalar-on-Density Regression; Bayes Space; Compositional Splines; Climate Change; Rice Yield; Vietnam (search for similar items in EconPapers)
Date: 2026-01-28
Note: View the original document on HAL open archive server: https://hal.science/hal-05481726v1
References: Add references at CitEc
Citations:
Downloads: (external link)
https://hal.science/hal-05481726v1/document (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:hal-05481726
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().