Optimal control of an infinite-dimensional problem with a state constraint arising in the spatial economic growth theory
Raouf Boucekkine,
Carmen Camacho () and
Weihua Ruan ()
Additional contact information
Carmen Camacho: PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement
Weihua Ruan: Purdue University [West Lafayette]
Working Papers from HAL
Abstract:
We use Ekeland's variational principle together with Pontryagin's maximum principle to solve an optimal spatiotemporal economic growth model with a state constraint (no-negative capital stock) where capital law of motion follows a diffusion equation. We obtain the set of necessary optimal conditions for the solution to meet the state constraints for all time and locations. The maximum principle allows to reduce the infinite-horizon optimal control problem into a finite-horizon one ultimately leading to prove the uniqueness of the optimal solution with positive capital, and non-existence of the optimal solution with eventually strictly positive capital when the time discount rate is too large or too small.
Keywords: Diffusion and growth; Optimal Control; State constraint; Ekeland's variational principle; Pontryagin's maximum principle (search for similar items in EconPapers)
Date: 2024-07
Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-04630098
References: Add references at CitEc
Citations:
Downloads: (external link)
https://shs.hal.science/halshs-04630098/document (application/pdf)
Related works:
Working Paper: Optimal control of an infinite-dimensional problem with a state constraint arising in the spatial economic growth theory (2024)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hal:wpaper:halshs-04630098
Access Statistics for this paper
More papers in Working Papers from HAL
Bibliographic data for series maintained by CCSD ().