Long-Run Forecasting in Multicointegrated Systems
Boriss Siliverstovs,
Tom Engsted and
Niels Haldrup ()
No 02-14, Finance Working Papers from University of Aarhus, Aarhus School of Business, Department of Business Studies
Abstract:
In this paper long-run forecasting of multicointegrating variables is investigated. Multicointegration
typically occurs in dynamic systems involving both stock and flow variables whereby a common feature
in the form of shared stochastic trends is present across different levels of multiple time series.
Hence, the effect of imposing this ”common feature” restriction on out-of-sample evaluation and forecasting
accuracy of such variables is of interest. In particular, we compare the long-run forecasting
performance of the multicointegrated variables between a model that correctly imposes the ”common feature” restrictions and a (univariate) model that omits these multicointegrating restrictions completely.
We employ different loss functions based on a range of mean square forecast error criteria,
and the results indicate that different loss functions result in different ranking of models with respect to their infinite horizon forecasting performance. We consider loss functions using a standard trace
mean square forecast error criterion (penalizing the forecast errors of flow variables only), and a loss function evaluating forecast errors of changes in both stock and flow variables. The latter loss function is based on the triangular representation of cointegrated systems and was initially suggested by Christoffersen and Diebold (1998). It penalizes deviations from long-run relations among the flow variables through cointegrating restrictions. We present a new loss function which further penalizes
deviations in the long run relationship between the levels of stock and flow variables. It is derived from the triangular representation of multicointegrated systems. Using this criterion, system forecasts from a model incorporating multicointegration restrictions dominate forecasts from univariate models.
The paper highlights the importance of carefully selecting loss functions in forecast evaluation of models involving stock and flow variables.
Keywords: Common Features; Multicointegration; Forecasting; VAR models (search for similar items in EconPapers)
Pages: 26 pages
Date: 2002-05-09
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.asb.dk/~tom/siliverstovsengstedhaldrup.pdf (application/pdf)
Related works:
Journal Article: Long-run forecasting in multicointegrated systems (2004) 
Working Paper: Long-Run Forecasting in Multicointegrated Systems (2003) 
Working Paper: Long-run forecasting in multicointegrated systems 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hhb:aarfin:2002_014
Access Statistics for this paper
More papers in Finance Working Papers from University of Aarhus, Aarhus School of Business, Department of Business Studies The Aarhus School of Business, Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark. Contact information at EDIRC.
Bibliographic data for series maintained by Helle Vinbaek Stenholt ( this e-mail address is bad, please contact ).