Economics at your fingertips  

Testing for Autocorrelation in High-dimensional Data

Rashid Mansoor () and H. E. T. Holgersson ()
Additional contact information
Rashid Mansoor: Jönköping International Business School
H. E. T. Holgersson: Jönköping International Business School

No 2012-2, JIBS Working Papers from Jönköping International Business School

Abstract: In this paper we investigate the size and power properties of some common tests for autocorrelation when applied to high-dimensional data. This includes cases when the dimension of data increases with the sample size. A total of seven tests, of which one is proposed by the authors, are investigated through Monte Carlo simulations. We include several functional forms of the autoregressive parameter and the residual covariance matrix to assess the tests. It is shown that all included standard tests fail either in terms of size or power if the dimension of data is close to the sample size, while the new test has good overall properties.

Keywords: VAR(1); Multivariate autocorrelation tests; Increasing dimension (search for similar items in EconPapers)
Date: 2012-04-23
References: Add references at CitEc
Citations Track citations by RSS feed

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in JIBS Working Papers from Jönköping International Business School Jönköping International Business School, P.O. Box 1026, SE-551 11 Jönköping, Sweden. Contact information at EDIRC.
Series data maintained by Susanne Hansson (). This e-mail address is bad, please contact .

Page updated 2017-10-18
Handle: RePEc:hhb:hjacfi:2012_002