A Poisson Ridge Regression Estimator
Kristofer Månsson () and
Ghazi Shukur
No 42, HUI Working Papers from HUI Research
Abstract:
The standard statistical method for analyzing count data is the Poisson regression model, which is usually estimated using maximum likelihood (ML). The ML method is very sensitive to multicollinearity. Therefore, we present a new Poisson ridge regression estimator (PRR) as a remedy to the problem of instability of the traditional ML method. To investigate the performance of the PRR and the traditional ML approaches for estimating the parameters of the Poisson regression model, we calculate the mean squared error (MSE) using Monte Carlo simulations. The result from the simulation study shows that the PRR method outperforms the traditional ML estimator in all of the different situations evaluated in this paper.
Keywords: Poisson regression; maximum likelihood; ridge regression; MSE; Monte Carlo simulations; Multicollinearity (search for similar items in EconPapers)
JEL-codes: C30 (search for similar items in EconPapers)
Pages: 16 pages
Date: 2010-08-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.hui.se/MediaBinaryLoader.axd?MediaArchi ... e_ForceDownload=true (application/pdf)
Our link check indicates that this URL is bad, the error code is: 404 Not Found (http://www.hui.se/MediaBinaryLoader.axd?MediaArchive_FileID=aa3de5de-83d9-492e-852b-365c20eff852&MediaArchive_ForceDownload=true [301 Moved Permanently]--> https://www.hui.se/MediaBinaryLoader.axd?MediaArchive_FileID=aa3de5de-83d9-492e-852b-365c20eff852&MediaArchive_ForceDownload=true [301 Moved Permanently]--> https://hui.se/MediaBinaryLoader.axd?MediaArchive_FileID=aa3de5de-83d9-492e-852b-365c20eff852&MediaArchive_ForceDownload=true)
Related works:
Journal Article: A Poisson ridge regression estimator (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:hhs:huiwps:0042
Access Statistics for this paper
More papers in HUI Working Papers from HUI Research Handelns Forskningsinstitut, c/o HUI Research, Regeringsgatan 60, 103 29 Stockholm, Sweden. Contact information at EDIRC.
Bibliographic data for series maintained by Hans Seerar Westerberg ().