EconPapers    
Economics at your fingertips  
 

Forecasting chaotic systems: The role of local Lyapunov exponents

Dominique Guégan and Justin Leroux

No 07-12, Cahiers de recherche from HEC Montréal, Institut d'économie appliquée

Abstract: We propose a novel methodology for forecasting chaotic systems which is based on the nearest-neighbor predictor and improves upon it by incorporating local Lyapunov exponents to correct for its inevitable bias. Using simulated data, we show that gains in prediction accuracy can be substantial. The general intuition behind the proposed method can readily be applied to other non-parametric predictors.

Pages: 12 pages
Date: 2007-12
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.hec.ca/iea/cahiers/2007/iea0712_jleroux.pdf (application/pdf)

Related works:
Working Paper: Forecasting chaotic systems: The role of local Lyapunov exponents (2009) Downloads
Working Paper: Forecasting chaotic systems: the role of local Lyapunov exponents (2008) Downloads
Working Paper: Forecasting chaotic systems: the role of local Lyapunov exponents (2008) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:iea:carech:0712

Ordering information: This working paper can be ordered from
Institut d'économie appliquée HEC Montréal 3000, Chemin de la Côte-Sainte-Catherine Montréal, Québec H3T 2A7

The price is Free.

Access Statistics for this paper

More papers in Cahiers de recherche from HEC Montréal, Institut d'économie appliquée Institut d'économie appliquée HEC Montréal 3000, Chemin de la Côte-Sainte-Catherine Montréal, Québec H3T 2A7. Contact information at EDIRC.
Bibliographic data for series maintained by Patricia Power ().

 
Page updated 2025-03-30
Handle: RePEc:iea:carech:0712