Forecasting chaotic systems: The role of local Lyapunov exponents
Dominique Guégan and
Justin Leroux
No 07-12, Cahiers de recherche from HEC Montréal, Institut d'économie appliquée
Abstract:
We propose a novel methodology for forecasting chaotic systems which is based on the nearest-neighbor predictor and improves upon it by incorporating local Lyapunov exponents to correct for its inevitable bias. Using simulated data, we show that gains in prediction accuracy can be substantial. The general intuition behind the proposed method can readily be applied to other non-parametric predictors.
Pages: 12 pages
Date: 2007-12
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.hec.ca/iea/cahiers/2007/iea0712_jleroux.pdf (application/pdf)
Related works:
Working Paper: Forecasting chaotic systems: The role of local Lyapunov exponents (2009) 
Working Paper: Forecasting chaotic systems: the role of local Lyapunov exponents (2008) 
Working Paper: Forecasting chaotic systems: the role of local Lyapunov exponents (2008) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:iea:carech:0712
Ordering information: This working paper can be ordered from
Institut d'économie appliquée HEC Montréal 3000, Chemin de la Côte-Sainte-Catherine Montréal, Québec H3T 2A7
The price is Free.
Access Statistics for this paper
More papers in Cahiers de recherche from HEC Montréal, Institut d'économie appliquée Institut d'économie appliquée HEC Montréal 3000, Chemin de la Côte-Sainte-Catherine Montréal, Québec H3T 2A7. Contact information at EDIRC.
Bibliographic data for series maintained by Patricia Power ().