EconPapers    
Economics at your fingertips  
 

L1-Penalized quantile regression in high-dimensional sparse models

Alexandre Belloni and Victor Chernozhukov
Additional contact information
Alexandre Belloni: Institute for Fiscal Studies

No CWP10/09, CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies

Abstract:

We consider median regression and, more generally, quantile regression in high-dimensional sparse models. In these models the overall number of regressors p is very large, possibly larger than the sample size n, but only s of these regressors have non-zero impact on the conditional quantile of the response variable, where s grows slower than n. Since in this case the ordinary quantile regression is not consistent, we consider quantile regression penalized by the L1-norm of coefficients (L1-QR). First, we show that L1-QR is consistent at the rate of the square root of (s/n) log p, which is close to the oracle rate of the square root of (s/n), achievable when the minimal true model is known. The overall number of regressors p affects the rate only through the log p factor, thus allowing nearly exponential growth in the number of zero-impact regressors. The rate result holds under relatively weak conditions, requiring that s/n converges to zero at a super-logarithmic speed and that regularization parameter satisfies certain theoretical constraints. Second, we propose a pivotal, data-driven choice of the regularization parameter and show that it satisfies these theoretical constraints. Third, we show that L1-QR correctly selects the true minimal model as a valid submodel, when the non-zero coefficients of the true model are well separated from zero. We also show that the number of non-zero coefficients in L1-QR is of same stochastic order as s, the number of non-zero coefficients in the minimal true model. Fourth, we analyze the rate of convergence of a two-step estimator that applies ordinary quantile regression to the selected model. Fifth, we evaluate the performance of L1-QR in a Monte-Carlo experiment, and provide an application to the analysis of the international economic growth.

Date: 2009-05-07
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://cemmap.ifs.org.uk/wps/cwp1009.pdf (application/pdf)

Related works:
Working Paper: L1-Penalized Quantile Regression in High-Dimensional Sparse Models (2019) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ifs:cemmap:10/09

Ordering information: This working paper can be ordered from
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE

Access Statistics for this paper

More papers in CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE. Contact information at EDIRC.
Bibliographic data for series maintained by Emma Hyman ().

 
Page updated 2025-03-31
Handle: RePEc:ifs:cemmap:10/09