EconPapers    
Economics at your fingertips  
 

On the computational complexity of MCMC-based estimators in large samples

Alexandre Belloni and Victor Chernozhukov
Additional contact information
Alexandre Belloni: Institute for Fiscal Studies

No CWP12/07, CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies

Abstract:

In this paper we examine the implications of the statistical large sample theory for the computational complexity of Bayesian and quasi-Bayesian estimation carried out using Metropolis random walks. Our analysis is motivated by the Laplace-Bernstein-Von Mises central limit theorem, which states that in large samples the posterior or quasi-posterior approaches a normal density. Using this observation, we establish polynomial bounds on the computational complexity of general Metropolis random walks methods in large samples. Our analysis covers cases, where the underlying log-likelihood or extremum criterion function is possibly nonconcave, discontinuous, and of increasing dimension. However, the central limit theorem restricts the deviations from continuity and log-concavity of the log-likelihood or extremum criterion function in a very specific manner.

Date: 2007-05-29
New Economics Papers: this item is included in nep-ecm
References: Add references at CitEc
Citations:

Downloads: (external link)
http://cemmap.ifs.org.uk/wps/cwp1207.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ifs:cemmap:12/07

Ordering information: This working paper can be ordered from
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE

Access Statistics for this paper

More papers in CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE. Contact information at EDIRC.
Bibliographic data for series maintained by Emma Hyman ().

 
Page updated 2025-03-31
Handle: RePEc:ifs:cemmap:12/07