Identification and estimation of nonclassical nonlinear errors-in-variables models with continuous distributions using instruments
Yingyao Hu and
Susanne Schennach
No CWP17/06, CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies
Abstract:
While the literature on nonclassical measurement error traditionally relies on the availability of an auxiliary dataset containing correctly measured observations, this paper establishes that the availability of instruments enables the identification of a large class of nonclassical nonlinear errors-in-variables models with continuously distributed variables. The main identifying assumption is that, conditional on the value of the true regressors, some "measure of location" of the distribution of the measurement error (e.g. its mean, mode or median) is equal to zero. The proposed approach relies on the eigenvalue-eigenfunction decomposition of an integral operator associated with specific joint probability densities. The main identifying assumption is used to order the eigenfunctions so that the decomposition is unique. The authors propose a convenient sieve-based estimator, derive its asymptotic properties and investigate its finite-sample behavior through Monte Carlo simulations. An example of application to the relationship between earnings and divorce rates is also provided.
Pages: 64 pp.
Date: 2006-09-11
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (20)
Downloads: (external link)
http://cemmap.ifs.org.uk/wps/cwp1706.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ifs:cemmap:17/06
Ordering information: This working paper can be ordered from
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Access Statistics for this paper
More papers in CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE. Contact information at EDIRC.
Bibliographic data for series maintained by Emma Hyman ().