An econometric model of link formation with degree heterogeneity
Bryan Graham
No CWP43/15, CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies
Abstract:
I formulate and study a model of undirected dyadic link formation which allows for assortative matching on observed agent characteristics (homophily) as well as unrestricted agent level heterogeneity in link surplus (degree heterogeneity). Similar to fixed effects panel data analyses, the joint distribution of observed and unobserved agent-level characteristics is left unrestricted. To motivate the introduction of degree heterogeneity, as well as its fixed effect treatment, I show how its presence can bias conventional homophily measures. Two estimators for the (common) homophily parameter, beta0, are developed and their properties studied under an asymptotic sequence involving a single network growing large. The first,tetrad logit (TL), estimator conditions on a sufficient statistic for the degree heterogeneity. The TL estimator is a fourth-order U-Process minimizer. Although the fourth-order summation in the TL criterion function is over the i = 1...N agents in the network, due to a degeneracy property, the leading variance term of hat-beta_TL is of order 1/n, where n = N*(N-1)/2 equals the number of observed dyads. Using martingale theory, I show that the limiting distribution of hat-beta_TL (appropriately scaled and normalized) is normal. The second, joint maximum likelihood (JML), estimator treats the degree heterogeneity as additional (incidental) parameters to be estimated. The properties of hat-beta_JML are also non-standard due to a parameter space which grows with the size of the network. Adapting and extending recent results from random graph theory and non-linear panel data analysis (e.g., Chatterjee, Diaconis and Sly, 2011; Hahn and Newey, 2004), I show that the limit distribution of hat-beta_JML is also normal, but contains a bias term. Accurate inference necessitates bias-correction. The TL estimate is consistent under sparse graph sequences, where the number of links per agent is small relative to the total number of agents, as well as dense graphs sequences, where the number of links per agent is proportional to the total number of agents in the limit. Consistency of the JML estimate, in contrast, is shown only under dense graph sequences. The finite sample properties of hat-beta_TL and hat-beta_JML are explored in a series of Monte Carlo experiments.
Date: 2015-08-04
New Economics Papers: this item is included in nep-net
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.ifs.org.uk/uploads/cemmap/wps/cwp431515.pdf (application/pdf)
Our link check indicates that this URL is bad, the error code is: 404 Not Found (https://www.ifs.org.uk/uploads/cemmap/wps/cwp431515.pdf [302 Found]--> https://ifs.org.uk/uploads/cemmap/wps/cwp431515.pdf)
Related works:
Working Paper: An econometric model of link formation with degree heterogeneity (2014) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ifs:cemmap:43/15
Ordering information: This working paper can be ordered from
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Access Statistics for this paper
More papers in CeMMAP working papers from Centre for Microdata Methods and Practice, Institute for Fiscal Studies The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE. Contact information at EDIRC.
Bibliographic data for series maintained by Emma Hyman ().