Factor forecasts for the UK
Michael Artis,
Anindya Banerjee and
Massimiliano Marcellino
No 203, Working Papers from IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University
Abstract:
Time series models are often adopted for forecasting because of their simplicity and good performance. The number of parameters in these models increases quickly with the number of variables modelled, so that usually only univariate or small-scale multivariate models are considered. Yet, data are now readily available for a very large number of macroeconomic variables that are potentially useful when forecasting. Hence, in this paper we construct a large macroeconomic data-set for the UK, with about 80 variables, model it using a dynamic factor model, and compare the resulting forecasts with those from a set of standard time series models. We find that just six factors are sufficient to explain 50% of the variability of all the variables in the data set. Moreover, these factors, which can be considered as the main driving forces of the economy, are related to key variables such as interest rates, monetary aggregates, prices, housing and labour market variables, and stock prices. Finally, the factor-based forecasts are shown to improve upon standard benchmarks for prices, real aggregates, and financial variables, at virtually no additional modelling or computational costs.
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (112)
Downloads: (external link)
https://repec.unibocconi.it/igier/igi/wp/2001/203.pdf (application/pdf)
Related works:
Working Paper: Factor Forecasts for the UK (2002) 
Working Paper: Factor Forecasts for the UK (2001) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:igi:igierp:203
Ordering information: This working paper can be ordered from
https://repec.unibocconi.it/igier/igi/
Access Statistics for this paper
More papers in Working Papers from IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University via Rontgen, 1 - 20136 Milano (Italy).
Bibliographic data for series maintained by ().