Clusterização Hierárquica Espacial com Atributos Binários
Alexandre Carvalho,
Pedro Albuquerque,
Gilberto Junior,
Rafael Guimarães and
Camilo Laureto
No 1428, Discussion Papers from Instituto de Pesquisa Econômica Aplicada - IPEA
Abstract:
Este trabalho discute uma metodologia para clusterização hierárquica espacial de polígonos contíguos e homogêneos de acordo com um conjunto de variáveis binárias. O algoritmo proposto é construído a partir de uma modificação do algoritmo aglomerativo de clusterização hierárquica tradicional, comumente utilizado na literatura de análise multivariada. De acordo com o método proposto neste estudo, a cada passo do processo sequencial de junção de clusters, impõe-se que somente conglomerados ? grupos de polígonos originais, como municípios, estados ou setores censitários - vizinhos possam ser unidos para formar um novo cluster maior. Neste caso, foram definidos enquanto vizinhos polígonos que possuem um vértice em comum (vizinhança do tipo queen) ou uma aresta em comum (vizinhança do tipo rook). O texto apresenta aplicações da nova metodologia para clusterização dos municípios brasileiros, com base nas variações do número de empregos formais entre os anos de 1997 e 2007. Diversos métodos de clusterização são estudados, assim como diferentes tipos de distâncias entre vetores de variáveis binárias. Os métodos estudados foram: centroid, single linkage, complete linkage, average linkage e average linkage weighted, Ward minimum variance e método da mediana. As distâncias utilizadas foram: Jaccard, Tanimoto, simple matching, Russel e Rao, Dice, Kulczynski. Apresenta-se uma discussão sobre alguns métodos comumente aplicados para seleção do número de clusters. Finalmente, estudos de casos são apresentados para: i) comparar a formação dos algoritmos espaciais versus agrupamentos políticos existentes (microrregiões, mesorregiões e Unidades da Federação); e ii) identificar áreas no território brasileiro onde se verificou crescimento diversificado, em termos de atividades econômicas. This paper studies a methodology for hierarchical spatial clustering of contiguous and homogeneous polygons, based on a set of binary variables. The proposed algorithm is built upon a modification of traditional agglomerative hierarchical clustering algorithm, commonly used in the multivariate analysis literature. According to the proposed method in this paper, at each step of the sequential process of collapsing clusters, only neighbor clusters (groups of original polygons, i.e. municipalities, census tracts, states) are allowed to be collapsed to form a bigger cluster. Two types of neighborhood are used: polygons with one edge in common (rook neighborhood) or polygons with only one point in common (queen neighborhood). In this paper, the methodology is employed to create clusters of Brazilian municipalities, based on the increase or decrease in the number of jobs between 1997 and 2007. Several clustering methods are investigated, as well as several types of vector distances for binary variables. The studied methods were: centroid method, single linkage, complete linkage, average linkage, average linkage weighted, Ward minimum variance e median method. The studied distances were: Jaccard, Tanimoto, simple matching, Russel e Rao, Dice, Kulczynski. A discussion on selection of the number of clusters is presented. Finally, case studies are presented in order to: (a) compare the intra-cluster variability of spatial hierarchical clusters versus the intra-cluster variability of existing political agglomerations (states, micro-regions and meso-regions); (b) identify areas or diversified economic growth.
Pages: 45 pages
Date: 2009-10
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.ipea.gov.br/portal/images/stories/PDFs/TDs/td_1428.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ipe:ipetds:1428
Access Statistics for this paper
More papers in Discussion Papers from Instituto de Pesquisa Econômica Aplicada - IPEA Contact information at EDIRC.
Bibliographic data for series maintained by Fabio Schiavinatto ().