EconPapers    
Economics at your fingertips  
 

Returns to Schooling and Bayesian Model Averaging: A Union of Two Literatures

Mingliang Li and Justin Tobias ()

Staff General Research Papers Archive from Iowa State University, Department of Economics

Abstract: In this paper, we review and unite the literatures on returns to schooling and Bayesian model averaging. We observe that most studies seeking to estimate the returns to education have done so using particular (and often different across researchers) model specifications. Given this, we review Bayesian methods which formally account for uncertainty in the specification of the model itself, and apply these techniques to estimate the economic return to a college education. The approach described in this paper enables us to determine those model specifications which are most favored by the given data, and also enables us to use the predictions obtained from all of the competing regression models to estimate the returns to schooling. The reported precision of such estimates also account for the uncertainty inherent in the model specification. Using U.S. data from the National Longitudinal Survey of Youth (NLSY), we also revisit several "stylized facts" in the returns to education literature and examine if they continue to hold after formally accounting for model uncertainty.

Date: 2004-01-01
References: Add references at CitEc
Citations: View citations in EconPapers (19)

Published in Journal of Economic Surveys 2004, vol. 18, pp. 153-180

There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:isu:genres:12011

Access Statistics for this paper

More papers in Staff General Research Papers Archive from Iowa State University, Department of Economics Iowa State University, Dept. of Economics, 260 Heady Hall, Ames, IA 50011-1070. Contact information at EDIRC.
Bibliographic data for series maintained by Curtis Balmer ().

 
Page updated 2025-04-09
Handle: RePEc:isu:genres:12011