Exchange rate forecasting: an application of radial basis function neural networks
Yih-Jiuan Wu
ISU General Staff Papers from Iowa State University, Department of Economics
Abstract:
The purpose of this research is to investigate the forecasting performance of Artificial Neural Network models applied to foreign exchange rates. The study concentrates on the behavior of forecasts of exchange rates generated from the radial basis function (RBF) network models where little previous work exists;Exchange rates examined are the German mark/US dollar, Japanese yen/US dollar, and Italian lira/US dollar. One-step-ahead forecasts from univariate and multivariate RBF models are compared with those generated from ARIMA models, random walk forecasts and the forward rates. Interest rates and the money supply (M1) are used as explanatory variables in the multivariate analyses;Out-of-sample evaluation criteria include root mean squared error, "correct direction", and "speculative direction". Hypothesis tests are used to assess if differences in forecast accuracy from different models are significant and to assess if models can predict the direction of change with statistical significance. The tests employed are the Modified Diebold Marino test [Harvey et al. (1997)], the Pesaran-Timmerman (1992, 1994) non-parametric market timing test, and the chi2 test of independence [see Swanson and White (1997)];The main results of the study indicate that RBF models may be a useful alternative to the other models considered for forecasting exchange rates. In particular, out-of-sample forecasting results indicate that some multivariate RBF models using interest rates as economic variables do have forecasting value for some exchange rates. In the presence of interest rates, the M1 variable does not seem to possess much explanatory power for forecasting the three exchange rates.
Date: 1998-01-01
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://dr.lib.iastate.edu/server/api/core/bitstre ... 7305e35ee419/content
Our link check indicates that this URL is bad, the error code is: 403 Forbidden
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:isu:genstf:1998010108000013540
Access Statistics for this paper
More papers in ISU General Staff Papers from Iowa State University, Department of Economics Iowa State University, Dept. of Economics, 260 Heady Hall, Ames, IA 50011-1070. Contact information at EDIRC.
Bibliographic data for series maintained by Curtis Balmer ().