Well-Posedness of Measurement Error Models for Self-Reported Data
Yonghong An and
Yingyao Hu
Economics Working Paper Archive from The Johns Hopkins University,Department of Economics
Abstract:
It is widely admitted that the inverse problem of estimating the distribution of a latent variable X* from an observed sample of X, a contaminated measurement of X*, is ill-posed. This paper shows that a property of self-reporting errors, observed from validation studies, is that the probability of reporting the truth is nonzero conditional on the true values, and furthermore, this property implies that measurement error models for self-reporting data are in fact well-posed. We also illustrate that the classical measurement error models may in fact be conditionally well-posed given prior information on the distribution of the latent variable X*.
Date: 2009-10
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.econ2.jhu.edu/REPEC/papers/wp556.pdf (application/pdf)
Related works:
Journal Article: Well-posedness of measurement error models for self-reported data (2012) 
Working Paper: Well-posedness of measurement error models for self-reported data (2009) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:jhu:papers:556
Access Statistics for this paper
More papers in Economics Working Paper Archive from The Johns Hopkins University,Department of Economics 3400 North Charles Street Baltimore, MD 21218. Contact information at EDIRC.
Bibliographic data for series maintained by Humphrey Muturi ().