Economics at your fingertips  

Optimal Estimation with Complete Subsets of Instruments

Seojeong Lee () and Youngki Shin ()

Department of Economics Working Papers from McMaster University

Abstract: In this paper we propose a two-stage least squares (2SLS) estimator whose first stage is based on the equal-weight average over a complete subset. We derive the approximate mean squared error (MSE) that depends on the size of the complete subset and characterize the proposed estimator based on the approximate MSE. The size of the complete subset is chosen by minimizing the sample counterpart of the approximate MSE. We show that this method achieves the asymptotic optimality. To deal with weak or irrelevant instruments, we generalize the approximate MSE under the presence of a possibly growing set of irrelevant instruments, which provides useful guidance under weak IV environments. The Monte Carlo simulation results show that the proposed estimator outperforms alternative methods when instruments are correlated with each other and there exists high endogeneity. As an empirical illustration, we estimate the logistic demand function in Berry, Levinsohn, and Pakes (1995).

Keywords: model averaging; complete subset; two stage least squares; many instruments; weak instruments. (search for similar items in EconPapers)
JEL-codes: C13 C14 C26 (search for similar items in EconPapers)
Pages: 62 pages
Date: 2018-10
New Economics Papers: this item is included in nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in Department of Economics Working Papers from McMaster University Contact information at EDIRC.
Bibliographic data for series maintained by ().

Page updated 2021-07-26
Handle: RePEc:mcm:deptwp:2018-15