On fractal distribution function estimation and applications
Stefano Iacus () and
Davide La Torre
Departmental Working Papers from Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano
Abstract:
In this paper we review some recent results concerning the approximations of distribution functions and measures on [0,1] based on iterated function systems. The two different approaches available in the literature are considered and their relation are investigated in the statistical perspective. In the second part of the paper we propose a new class of estimators for the distribution function and the related characteristic and density functions. Glivenko-Cantelli, LIL properties and local asymptotic minimax efficiency are established for some of the proposed estimators. Via Monte Carlo analysis we show that, for small sample sizes, the proposed estimator can be as efficient or even better than the empirical distribution function and the kernel density estimator respectively. This paper is to be considered as a first attempt in the construction of new class of estimators based on fractal objects. Pontential applications to survival analysis with random censoring are proposed at the end of the paper.
Date: 2002-01-01
New Economics Papers: this item is included in nep-cmp and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://wp.demm.unimi.it/files/wp/2002/DEMM-2002_007wp.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:mil:wpdepa:2002-07
Access Statistics for this paper
More papers in Departmental Working Papers from Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano Via Conservatorio 7, I-20122 Milan - Italy. Contact information at EDIRC.
Bibliographic data for series maintained by DEMM Working Papers ( this e-mail address is bad, please contact ).