Semantic Integration Approach to Efficient Business Data Supply Chain: Integration Approach to Interoperable XBRL
Hongwei Zhu and
Stuart E. Madnick
Working papers from Massachusetts Institute of Technology (MIT), Sloan School of Management
Abstract:
As an open standard for electronic communication of business and financial data, XBRL has the potential of improving the efficiency of the business data supply chain. A number of jurisdictions have developed different XBRL taxonomies as their data standards. Semantic heterogeneity exists in these taxonomies, the corresponding instances, and the internal systems that store the original data. Consequently, there are still substantial difficulties in creating and using XBRL instances that involve multiple taxonomies. To fully realize the potential benefits of XBRL, we have to develop technologies to reconcile semantic heterogeneity and enable interoperability of various parts of the supply chain. In this paper, we analyze the XBRL standard and use examples of different taxonomies to illustrate the interoperability challenge. We also propose a technical solution that incorporates schema matching and context mediation techniques to improve the efficiency of the production and consumption of XBRL data.
Keywords: XBRL; semantic data integration; context mediation; ontology; schema matching (search for similar items in EconPapers)
Date: 2008-01-11
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/1721.1/40087 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:mit:sloanp:40087
Ordering information: This working paper can be ordered from
MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT), SLOAN SCHOOL OF MANAGEMENT, 50 MEMORIAL DRIVE CAMBRIDGE MASSACHUSETTS 02142 USA
Access Statistics for this paper
More papers in Working papers from Massachusetts Institute of Technology (MIT), Sloan School of Management MASSACHUSETTS INSTITUTE OF TECHNOLOGY (MIT), SLOAN SCHOOL OF MANAGEMENT, 50 MEMORIAL DRIVE CAMBRIDGE MASSACHUSETTS 02142 USA. Contact information at EDIRC.
Bibliographic data for series maintained by None ( this e-mail address is bad, please contact ).