Derivative pricing and hedging on Carbon Market
Marius-Cristian Frunza () and
Dominique Guegan ()
Additional contact information
Marius-Cristian Frunza: Structuring Department - Sagacarbon et Centre d'Economie de la Sorbonne, https://centredeconomiesorbonne.cnrs.fr
Dominique Guegan: Centre d'Economie de la Sorbonne - Paris School of Economics, https://cv.archives-ouvertes.fr/dominique-guegan
Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne
Abstract:
The aim of this work is to bring an econometric approach upon the CO2 market. We identify the specificities of this market, and analyze the carbon as a commodity. We investigate the econometric particularities of CO2 prices behavior and their result of the calibration. We apprehend and explain the reasons of the non-Gaussian behavior of this market focusing mainly upon jump diffusions and generalized hyperbolic distributions. These models are used for pricing and hedging of carbon options. We estimate the pricing accuracy of each model and the capacity to provide an efficient dynamic hedging
Keywords: Carbon; Normal Inverse Gaussian; CER; EUA; swap (search for similar items in EconPapers)
Pages: 5 pages
Date: 2010-01
New Economics Papers: this item is included in nep-ene and nep-env
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://mse.univ-paris1.fr/pub/mse/CES2010/10007.pdf (application/pdf)
Related works:
Working Paper: Derivative Pricing and Hedging on Carbon Market (2010) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:mse:cesdoc:10007
Access Statistics for this paper
More papers in Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne Contact information at EDIRC.
Bibliographic data for series maintained by Lucie Label ().