Detrending Persistent Predictors
Christophe Boucher () and
Bertrand Maillet
Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne
Abstract:
Researchers in finance very often rely on highly persistent Ñ nearly integrated Ñ explanatory variables to predict returns. This paper proposes to stand up to the usual problem of persistent regressor bias, by detrending the highly auto-correlated predictors. We find that the statistical evidence of out-of-sample predictability of stock returns is stronger, once predictors are adjusted for high persistence
Keywords: Forecasting; persistence; detrending; expected returns (search for similar items in EconPapers)
JEL-codes: C1 C14 G1 (search for similar items in EconPapers)
Pages: 10 pages
Date: 2011-03
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
ftp://mse.univ-paris1.fr/pub/mse/CES2011/11019.pdf (application/pdf)
Related works:
Working Paper: Detrending Persistent Predictors (2011) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:mse:cesdoc:11019
Access Statistics for this paper
More papers in Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne Contact information at EDIRC.
Bibliographic data for series maintained by Lucie Label ().