Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics
Camila Epprecht (),
Dominique Guegan (),
Álvaro Veiga () and
Joel Correa da Rosa ()
Additional contact information
Camila Epprecht: Centre d'Economie de la Sorbonne and Department of Electrical Engineering-Pontifical Catholic University of Rio de Janeiro, https://centredeconomiesorbonne.cnrs.fr
Dominique Guegan: Centre d'Economie de la Sorbonne - Paris School of Economics, LabEX ReFi and IPAG Paris, https://cv.archives-ouvertes.fr/dominique-guegan
Álvaro Veiga: Department of Electrical Engineering-Pontifical Catholic University of Rio de Janeiro
Joel Correa da Rosa: Icahn School of Medicine at Mount Sinai - Department of Population Health Science & Policy, New York
Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne
Abstract:
In this paper we compare two approaches of model selection methods for linear regression models: classical approach - Autometrics (automatic general-to-specific selection) — and statistical learning - LASSO (?1-norm regularization) and adaLASSO (adaptive LASSO). In a simulation experiment, considering a simple setup with orthogonal candidate variables and independent data, we compare the performance of the methods concerning predictive power (out-of-sample forecast), selection of the correct model (variable selection) and parameter estimation. The case where the number of candidate variables exceeds the number of observation is considered as well. Finally, in an application using genomic data from a highthroughput experiment we compare the predictive power of the methods to predict epidermal thickness in psoriatic patients
Keywords: Model selection; general-to-specific; adaptive LASSO; sparse models; Monte Carlo simulation; genetic data (search for similar items in EconPapers)
JEL-codes: C51 C52 C53 (search for similar items in EconPapers)
Pages: 27 pages
Date: 2013-11, Revised 2017-10
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
ftp://mse.univ-paris1.fr/pub/mse/CES2013/13080R.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:mse:cesdoc:13080r
Access Statistics for this paper
More papers in Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne Contact information at EDIRC.
Bibliographic data for series maintained by Lucie Label ().