EconPapers    
Economics at your fingertips  
 

Complexity of inheritance of F-convexity for restricted games induced by minimum partitions

Alexandre Skoda ()
Additional contact information
Alexandre Skoda: Centre d'Economie de la Sorbonne, https://centredeconomiesorbonne.univ-paris1.fr

Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne

Abstract: Let G = (N,E,w ) be a weighted communication graph (with weight function w on E ). For every subset A ? N, we delete in the subset E (A ) of edges with ends in A, all edges of minimum weight in E (A ). Then the connected components of the corresponding induced subgraph constitue a partition of A that we Pmin(A ). For every game (N , v ), we define the Pmin-restricted game (N , v ) by v (A = ?F? Pmin (A) v(F ) for all A ? N. We prove that we can decide in polynomial time if there is inheritance of F-convexity from N , v ) to the Pmin-restricted game (N , v ) where F-convexity is obtained by restricting convexity to connected subsets

Keywords: communication networks; cooperative game; convex game; restricted game; partitions; supermodularity; graph; complexity (search for similar items in EconPapers)
Pages: 28 pages
Date: 2016-07
New Economics Papers: this item is included in nep-gth and nep-hpe
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)

Downloads: (external link)
ftp://mse.univ-paris1.fr/pub/mse/CES2016/16055.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:mse:cesdoc:16055

Access Statistics for this paper

More papers in Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne Contact information at EDIRC.
Bibliographic data for series maintained by Lucie Label ().

 
Page updated 2025-04-02
Handle: RePEc:mse:cesdoc:16055