EconPapers    
Economics at your fingertips  
 

New method to detect convergence in simple multi-period market games with infinite large strategy spaces

Jørgen Vitting Andersen () and Philippe de Peretti ()
Additional contact information
Jørgen Vitting Andersen: Centre d'Economie de la Sorbonne, https://centredeconomiesorbonne.univ-paris1.fr
Philippe de Peretti: Centre d'Economie de la Sorbonne, https://centredeconomiesorbonne.univ-paris1.fr

Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne

Abstract: We introduce a new methodology that enables the detection of onset of convergence towards Nash equilibria, in simple repeated-games with infinite large strategy spaces. The method works by constraining on a special and finite subset of strategies. We illustrate how the method can predict (in special time periods) with a high success rate the action of participants in a series of experiments

Keywords: multi-period games; infinite strategy space; decoupling; bounded rationality; agent-based modeling (search for similar items in EconPapers)
JEL-codes: C15 C53 C73 C92 (search for similar items in EconPapers)
Pages: 28 pages
Date: 2018-12
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
ftp://mse.univ-paris1.fr/pub/mse/CES2018/18038.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:mse:cesdoc:18038

Access Statistics for this paper

More papers in Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne Contact information at EDIRC.
Bibliographic data for series maintained by Lucie Label ().

 
Page updated 2025-04-02
Handle: RePEc:mse:cesdoc:18038