Mackey compactness in B(S)
Aloisio Araujo (),
Jean-Marc Bonnisseau and
Alain Chateauneuf
Additional contact information
Aloisio Araujo: IMPA - Brazil
Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne
Abstract:
Let S be a set equipped with the discrete topology and B(S) be the normed space of bounded real mappings on S, endowed with the sup-norm. In this paper, we first prove that B(S) is the nom dual of the space rca(S) of all regular and bounded Borel measure on S. Then we show that the closed unit ball of B(S) is compact in the Mackey topology t(B(S), rca(S)). We also provide a short presentation of an economic application for an intertemporal allocation of resources
Keywords: Mackey compactness; bounded mappings; regular Borel measure; norm dual (search for similar items in EconPapers)
Pages: 10 pages
Date: 2021-03
References: Add references at CitEc
Citations:
Downloads: (external link)
http://mse.univ-paris1.fr/pub/mse/CES2021/21030.pdf (application/pdf)
https://halshs.archives-ouvertes.fr/halshs-03461538
Related works:
Working Paper: Mackey compactness in B(S) (2021) 
Working Paper: Mackey compactness in B(S) (2021) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:mse:cesdoc:21030
Access Statistics for this paper
More papers in Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne Contact information at EDIRC.
Bibliographic data for series maintained by Lucie Label ().