EconPapers    
Economics at your fingertips  
 

Mackey compactness in B(S)

Aloisio Araujo (), Jean-Marc Bonnisseau and Alain Chateauneuf
Additional contact information
Aloisio Araujo: IMPA - Brazil

Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne

Abstract: Let S be a set equipped with the discrete topology and B(S) be the normed space of bounded real mappings on S, endowed with the sup-norm. In this paper, we first prove that B(S) is the nom dual of the space rca(S) of all regular and bounded Borel measure on S. Then we show that the closed unit ball of B(S) is compact in the Mackey topology t(B(S), rca(S)). We also provide a short presentation of an economic application for an intertemporal allocation of resources

Keywords: Mackey compactness; bounded mappings; regular Borel measure; norm dual (search for similar items in EconPapers)
Pages: 10 pages
Date: 2021-03
References: Add references at CitEc
Citations:

Downloads: (external link)
http://mse.univ-paris1.fr/pub/mse/CES2021/21030.pdf (application/pdf)
https://halshs.archives-ouvertes.fr/halshs-03461538

Related works:
Working Paper: Mackey compactness in B(S) (2021) Downloads
Working Paper: Mackey compactness in B(S) (2021) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:mse:cesdoc:21030

Access Statistics for this paper

More papers in Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne Contact information at EDIRC.
Bibliographic data for series maintained by Lucie Label ().

 
Page updated 2025-04-02
Handle: RePEc:mse:cesdoc:21030