Borsuk's antipodal and fixed-point theorems for correspondences without convex values
Jean-Marc Bonnisseau,
Souhail Chebbi,
Pascal Gourdel and
Hakim Hammami
Additional contact information
Souhail Chebbi: King Saud University
Hakim Hammami: Ecole Polytechnique de Tunisie et Centre d'Economie de la Sorbonne - Paris School of Economics
Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne
Abstract:
We present an extension of Borsuk's antipodal theorem (existence of a zero) for antipodally approachable correspondences without convex values. This result is a generalization of Borsuk-Ulam Theorem and has a fixed-point equivalent formulation
Keywords: Borsuk's antipodal Theorem; balanced set; approachable selection; fixed points (search for similar items in EconPapers)
JEL-codes: C02 C65 C69 (search for similar items in EconPapers)
Pages: 12 pages
Date: 2007-12
References: Add references at CitEc
Citations:
Downloads: (external link)
https://shs.hal.science/halshs-00204615 (application/pdf)
Related works:
Working Paper: Borsuk's antipodal and fixed-point theorems for correspondences without convex values (2007) 
Working Paper: Borsuk's antipodal and fixed-point theorems for correspondences without convex values (2007) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:mse:cesdoc:b07077
Access Statistics for this paper
More papers in Documents de travail du Centre d'Economie de la Sorbonne from Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne Contact information at EDIRC.
Bibliographic data for series maintained by Lucie Label ().