EconPapers    
Economics at your fingertips  
 

An EM Algorithm for Modelling Variably-Aggregated Demand

S. Grose and Keith McLaren

No 2/00, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics

Abstract: This paper develops an EM algorithm for the estimation of a consumer demand system involving variably aggregated data. The methodology is based on the observation that more highly aggregated data does in fact contain information on the finer subcategories. It is therefore possible, under certain simplifying assumptions, to derive the distribution of the unobserved fine-level expenditures conditional on the observed but more highly aggregated data. The expectation of the log-likelihood is then taken with respect to this conditional distribution. Under the assumption of multivariate normality both these steps can be performed analytically, resulting in an EM criterion that can be maximised iteratively at comparatively little cost. The technique is applied to an ABS dataset containing historical information relating to private final consumption expenditures on up to 18 commodities.

Keywords: EM Algorithm; Singular demand systems; Linear expenditure system; Missing data. (search for similar items in EconPapers)
JEL-codes: C32 C51 D12 E21 (search for similar items in EconPapers)
Pages: 26 pages
Date: 2000-03
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2000/wp2-00.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2000-2

Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics

Access Statistics for this paper

More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().

 
Page updated 2025-03-30
Handle: RePEc:msh:ebswps:2000-2