Persistence and Nonstationary Models
Brendan McCabe,
Gael Martin and
Andrew Tremayne
No 16/03, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics
Abstract:
The aim of this paper is to examine the measurement of persistence in a range of time series models nested in the framework of Cramer (1961). This framework is a generalization of the Wold (1938) decomposition for stationary time series which, in addition to accommodating the standard I(0) and I(1) models, caters for alternative nonstationary processes. Three measures of persistence are considered, namely the long-run impulse response, variance ratio and autocorrelation functions. Particular emphasis is given to the behaviour of these measures in a range of nonstationary models. We document conflict that arises between different measures, applied to the same model, as well as conflict arising from the use of a given measure in different models. Precisely which persistence measures are time dependent and which are not, is highlighted. The nature of the general representation used also helps clarify what shock the impulse response function refers to in the case of models where more than one random disturbance impinges on the time series.
Keywords: Cramer Representation; Stochastic Unit Root Model; Stochastic Integration; Impulse Response; Variance Ratio; Autocorrelation Function; Long Memory. (search for similar items in EconPapers)
JEL-codes: C10 C22 (search for similar items in EconPapers)
Pages: 25 pages
Date: 2003-09
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2003/wp16-03.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2003-16
Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics
Access Statistics for this paper
More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().