EconPapers    
Economics at your fingertips  
 

Recursive and direct multi-step forecasting: the best of both worlds

Souhaib Ben Taieb and Rob Hyndman ()

No 19/12, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics

Abstract: We propose a new forecasting strategy, called rectify, that seeks to combine the best properties of both the recursive and direct forecasting strategies. The rationale behind the rectify strategy is to begin with biased recursive forecasts and adjust them so they are unbiased and have smaller error. We use linear and nonlinear simulated time series to investigate the performance of the rectify strategy and compare the results with those from the recursive and the direct strategies. We also carry out some experiments using real world time series from the M3 and the NN5 forecasting competitions. We find that the rectify strategy is always better than, or at least has comparable performance to, the best of the recursive and the direct strategies. This finding makes the rectify strategy very attractive as it avoids making a choice between the recursive and the direct strategies which can be a difficult task in real-world applications.

Keywords: Multi-step forecasting; forecasting strategies; recursive forecasting; direct forecasting; linear time series; nonlinear time series; M3 competition; NN5 competition (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2) Track citations by RSS feed

Downloads: (external link)
http://business.monash.edu/econometrics-and-busine ... ions/ebs/wp19-12.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2012-19

Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics

Access Statistics for this paper

More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Dr Xibin Zhang ().

 
Page updated 2019-04-14
Handle: RePEc:msh:ebswps:2012-19