EconPapers    
Economics at your fingertips  
 

Bayesian estimation of a discrete response model with double rules of sample selection

Rong Zhang (), Brett A. Inder () and Xibin Zhang ()

No 24/13, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics

Abstract: We present a Bayesian sampling algorithm for parameter estimation in a discrete-response model, where the dependent variables contain two layers of binary choices and one ordered response. Our investigation is motivated by an empirical study using such a double-selection rule for three labour-market outcomes, namely labour-force participation, employment and occupational skill level. It is of particular interest to measure the marginal effects of some mental health factors on these labour-market outcomes. The contribution of our investigation is to present a sampling algorithm, which is a hybrid of Gibbs and Metropolis-Hastings algorithms. In Monte Carlo simulations, numerical maximization of likelihood fails to converge for more than half of the simulated samples. Our Bayesian method represents a substantial improvement: it converges in every sample, and performs with similar or better precision than maximum likelihood. We apply our sampling algorithm to the double-selection model of labour-force participation, employment and occupational skill level, where marginal effects of explanatory variables, in particular the mental health factors, on the three labour-force outcomes are assessed through 95% Bayesian credible intervals. The proposed sampling algorithm can easily be modified for other multivariate nonlinear models that involve selectivity and are difficult to estimate by other means.

Keywords: Gibbs sampler; Marginal effects; Mental illness; Metropolis-Hastings algorithm; Ordered outcome. (search for similar items in EconPapers)
Date: 2013
New Economics Papers: this item is included in nep-dcm and nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://business.monash.edu/econometrics-and-busine ... ions/ebs/wp24-13.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2013-24

Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics

Access Statistics for this paper

More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().

 
Page updated 2025-04-18
Handle: RePEc:msh:ebswps:2013-24