EconPapers    
Economics at your fingertips  
 

Robust Bayesian exponentially tilted empirical likelihood method

Zhichao Liu (), Catherine Forbes and Heather Anderson

No 21/17, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics

Abstract: This paper proposes a new Bayesian approach for analysing moment condition models in the situation where the data may be contaminated by outliers. The approach builds upon the foundations developed by Schennach (2005) who proposed the Bayesian exponentially tilted empirical likelihood (BETEL) method, justified by the fact that an empirical likelihood (EL) can be interpreted as the nonparametric limit of a Bayesian procedure when the implied probabilities are obtained from maximizing entropy subject to some given moment constraints. Considering the impact that outliers are thought to have on the estimation of population moments, we develop a new robust BETEL (RBETEL) inferential methodology to deal with this potential problem. We show how the BETEL methods are linked to the recent work of Bissiri et al. (2016) who propose a general framework to update prior belief via a loss function. A controlled simulation experiment is conducted to investigate the performance of the RBETEL method. We find that the proposed methodology produces reliable posterior inference for the fundamental relationships that are embedded in the majority of the data, even when outliers are present. The method is also illustrated in an empirical study relating brain weight to body weight using a dataset containing sixty-five different land animal species.

Keywords: Moment condition models; outliers; misspecification. (search for similar items in EconPapers)
Pages: 46
Date: 2017
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.monash.edu/business/econometrics-and-b ... ions/ebs/wp21-17.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2017-21

Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics

Access Statistics for this paper

More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().

 
Page updated 2025-03-30
Handle: RePEc:msh:ebswps:2017-21