EconPapers    
Economics at your fingertips  
 

Most Powerful Test against High Dimensional Free Alternatives

Yi He, Sombut Jaidee () and Jiti Gao

No 13/20, Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics

Abstract: We propose a powerful quadratic test for the overall significance of many weak exogenous variables in a dense autoregressive model. By shrinking the classical weighting matrix on the sample moments to be identity, the test is asymptotically correct in high dimensions even when the number of coefficients is larger than the sample size. Our theory allows a non-parametric error distribution and estimation of the autoregressive coefficients. Using random matrix theory, we show that the test has the optimal asymptotic testing power among a large class of competitors against local dense alternatives whose direction is free in the eigenbasis of the sample covariance matrix among regressors. The asymptotic results are adaptive to the predictors' cross-sectional and temporal dependence structure, and do not require a limiting spectral law of their sample covariance matrix. The method extends beyond autoregressive models, and allows more general nuisance parameters. Monte Carlo studies suggest a good power performance of our proposed test against high dimensional dense alternative for various data generating processes. We apply our tests to detect the overall significance of over one hundred exogenous variables in the latest FRED-MD database for predicting the monthly growth in the US industrial production index.

Keywords: high-dimensional linear model; null hypothesis; uniformly power test (search for similar items in EconPapers)
JEL-codes: C12 C21 C55 (search for similar items in EconPapers)
Pages: 48
Date: 2020
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.monash.edu/business/ebs/research/publications/ebs/wp13-2020.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:msh:ebswps:2020-13

Ordering information: This working paper can be ordered from
http://business.mona ... -business-statistics

Access Statistics for this paper

More papers in Monash Econometrics and Business Statistics Working Papers from Monash University, Department of Econometrics and Business Statistics PO Box 11E, Monash University, Victoria 3800, Australia. Contact information at EDIRC.
Bibliographic data for series maintained by Professor Xibin Zhang ().

 
Page updated 2025-03-30
Handle: RePEc:msh:ebswps:2020-13