Large Poisson Games
Roger Myerson
No 1189, Discussion Papers from Northwestern University, Center for Mathematical Studies in Economics and Management Science
Abstract:
Existence of equilibria is proven for Poisson games with compact type sets and finite action sets. Then three theorems are introduced for characterizing limits of probabilities in Poisson games when the expected number of players becomes large. The magnitude theorem characterizes the rate at which probabilities of events go zero. The offset theorem characterizes the ratios of probabilites of events that differ by a finite additive translation. The hyperplane theorem estimates probabilites of hyperplane events. These theorems are applied to derive formulas for pivot probabilities in binary elections, and to analyze a voting game that was studied by Ledyard.
Date: 1997-06
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.kellogg.northwestern.edu/research/math/papers/1189.pdf main text (application/pdf)
Related works:
Journal Article: Large Poisson Games (2000) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nwu:cmsems:1189
Ordering information: This working paper can be ordered from
Access Statistics for this paper
More papers in Discussion Papers from Northwestern University, Center for Mathematical Studies in Economics and Management Science Center for Mathematical Studies in Economics and Management Science, Northwestern University, 580 Jacobs Center, 2001 Sheridan Road, Evanston, IL 60208-2014. Contact information at EDIRC.
Bibliographic data for series maintained by Fran Walker ( this e-mail address is bad, please contact ).