An Evolutionary Approach to Congestion
William Sandholm
No 1198, Discussion Papers from Northwestern University, Center for Mathematical Studies in Economics and Management Science
Abstract:
Using techniques from evolutionary game theory, we analyze potential games with continuous player sets, a class of games which includes a general model of network congestion as a special case. We concisely characterize both the complete set of Nash equilibria and the set of equilibria which are robust against small disturbances of aggregate behavior. We provide a strong evolutionary justification of why equilibria must arise. We characterize situations in which stable equilibria are socially efficient, and show that in such cases, evolution always increases aggregate efficiency. Applying these results, we construct a parameterized class of congestion tolls under which evolution yields socially optimal play. Finally, we characterize potential games with continuous player sets by establishing that a generalization of these games is precisely the limiting version of finite player potential games (Monderer and Shapley (1996)) which satisfy an anonymity condition.
JEL-codes: C61 C72 C73 D62 R41 R48 (search for similar items in EconPapers)
Date: 1997-04
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.kellogg.northwestern.edu/research/math/papers/1198.pdf main text (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nwu:cmsems:1198
Ordering information: This working paper can be ordered from
Access Statistics for this paper
More papers in Discussion Papers from Northwestern University, Center for Mathematical Studies in Economics and Management Science Center for Mathematical Studies in Economics and Management Science, Northwestern University, 580 Jacobs Center, 2001 Sheridan Road, Evanston, IL 60208-2014. Contact information at EDIRC.
Bibliographic data for series maintained by Fran Walker ( this e-mail address is bad, please contact ).