Peer Groups and Bias Detection in Least Squares Regression
Eric Blankmeyer
MPRA Paper from University Library of Munich, Germany
Abstract:
A correlation between regressors and disturbances presents challenging problems in linear regression. In the context of spatial econometrics LeSage and Pace (2009) show that an autoregressive model estimated by maximum likelihood may be able to detect least squares bias. I suggest that spatial neighbors can be replaced by “peer groups” as in Blankmeyer et al. (2011), thereby extending considerably the range of contexts where the autoregressive model can be utilized. The procedure is applied to two data sets and in a simulation
Keywords: peer groups; least-squares bias; spatial autoregression (search for similar items in EconPapers)
JEL-codes: C4 (search for similar items in EconPapers)
Date: 2021-11-15
New Economics Papers: this item is included in nep-ecm, nep-ore and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/110866/1/MPRA_paper_110866.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:110866
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().