A multiplicative thinning-based integer-valued GARCH model
Abdelhakim Aknouche and
Manuel Scotto
MPRA Paper from University Library of Munich, Germany
Abstract:
In this paper we introduce a multiplicative integer-valued time series model, which is defined as the product of a unit-mean integer-valued independent and identically distributed (iid) sequence, and an integer-valued dependent process. The latter is defined as a binomial thinning operation of its own past and of the past of the observed process. Furthermore, it combines some features of the integer-valued GARCH (INGARCH), the autoregressive conditional duration (ACD), and the integer autoregression (INAR) processes. The proposed model is semi-parametric and is able to parsimoniously generate very high overdispersion, persistence, and heavy-tailedness. The dynamic probabilistic structure of the model is first analyzed. In addition, parameter estimation is considered by using a two-stage weighted least squares estimate (2SWLSE), consistency and asymptotic normality (CAN) of which are established under mild conditions. Applications of the proposed formulation to simulated and actual count time series data are provided.
Keywords: Integer-valued time series; INAR model; INGARCH model; multiplicative error model (MEM); ACD model; two-stage weighted least squares. (search for similar items in EconPapers)
JEL-codes: C01 C13 C22 C25 (search for similar items in EconPapers)
Date: 2022-03-20
New Economics Papers: this item is included in nep-ecm, nep-ets and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/112475/1/MPRA_paper_112475.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:112475
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().