EconPapers    
Economics at your fingertips  
 

Threshold spatial autoregressive model

Kunpeng Li

MPRA Paper from University Library of Munich, Germany

Abstract: This paper considers the estimation and inferential issues of threshold spatial autoregressive model, which is a hybrid of threshold model and spatial autoregressive model. We consider using the quasi maximum likelihood (QML) method to estimate the model. We prove the tightness and the H\'{a}jek-R\'{e}nyi type inequality for a quadratic form, and establish a full inferential theory of the QML estimator under the setup that threshold effect shrinks to zero along with an increasing sample size. We consider the hypothesis testing on the presence of threshold effect. Three super-type statistics are proposed to perform this testing. Their asymptotic behaviors are studied under the Pitman local alternatives. A bootstrap procedure is proposed to obtain the asymptotically correct critical value. We also consider the hypothesis testing on the threshold value equal to some prespecified one. We run Monte carlo simulations to investigate the finite sample performance of the QML estimators and find that the QML estimators have good performance.

Keywords: Spatial autoregressive models; Spillover effects; Threshold effect; Maximum likelihood estimation; Inferential theory. (search for similar items in EconPapers)
JEL-codes: C12 C31 (search for similar items in EconPapers)
Date: 2022-06-27
New Economics Papers: this item is included in nep-ecm and nep-ure
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/113568/1/MPRA_paper_113568.pdf original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:113568

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2025-03-19
Handle: RePEc:pra:mprapa:113568