Forecasting using Fuzzy Time Series
Fatih Chellai
MPRA Paper from University Library of Munich, Germany
Abstract:
This chapter is a very short introduction to Fuzzy Time Series (FTS) models. The aim is to present an overview of the concepts of fuzzy logic, fuzzy set theory, and fuzzy time series framework. Accordingly, the chapter has a full application dimension of the FTS models as a main vocation. The R program was used to fit and forecast the principal FTS models, where real datasets of road traffic accidents in Algeria have been used. This chapter is organized as follows; the first section presents the concept of fuzzy logic, the second section is devoted to the Fuzzy Time Series, where we define a fuzzy set and universe of discourse. The third section summarizes the main models of fuzzy time series, precisely; we presented the (Song & Chissom, 1993) model, the (Chen, 1996) model, the Heuristic (Huarng, 2001) model, the (Abbasov & Mamedova, 2003) model, the (Chen & Hsu, 2004) model, and the (Singh, 2008) model. The fourth section is a case application of these models on the number of accidents in Algeria; the “AnalyzeTS” package of the R program was used to demonstrate the steps of estimation and forecasting.
Keywords: Fuzzy logic; Forecasting; Time Series (search for similar items in EconPapers)
JEL-codes: C1 C22 C4 C87 (search for similar items in EconPapers)
Date: 2022-07-19
New Economics Papers: this item is included in nep-for
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/113848/1/MPRA_paper_113848.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:113848
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().