EconPapers    
Economics at your fingertips  
 

A Sufficient Statistical Test for Dynamic Stability

Muhammad Ashfaq Ahmed and Nasreen Nawaz

MPRA Paper from University Library of Munich, Germany

Abstract: In the existing Statistics and Econometrics literature, there does not exist a statistical test which may test for all kinds of roots of the characteristic polynomial leading to an unstable dynamic response, i.e., positive and negative real unit roots, complex unit roots and the roots lying inside the unit circle. This paper develops a test which is sufficient to prove dynamic stability (in the context of roots of the characteristic polynomial) of a univariate as well as a multivariate time series without having a structural break. It covers all roots (positive and negative real unit roots, complex unit roots and the roots inside the unit circle whether single or multiple) which may lead to an unstable dynamic response. Furthermore, it also indicates the number of roots causing instability in the time series. The test is much simpler in its application as compared to the existing tests as the series is strictly stationary under the null.

Keywords: Dynamic stability; Real and complex roots; Unit circle (search for similar items in EconPapers)
JEL-codes: C01 C12 (search for similar items in EconPapers)
Date: 2023-03-16
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/116684/1/MPRA_paper_116684.pdf original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:116684

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2023-11-11
Handle: RePEc:pra:mprapa:116684