Asymptotics for statistical treatment rules
Keisuke Hirano and
Jack Porter
MPRA Paper from University Library of Munich, Germany
Abstract:
This paper develops asymptotic optimality theory for statistical treatment rules in smooth parametric and semiparametric models. Manski (2000, 2002, 2004) and Dehejia (2005) have argued that the problem of choosing treatments to maximize social welfare is distinct from the point estimation and hypothesis testing problems usually considered in the treatment effects literature, and advocate formal analysis of decision procedures that map empirical data into treatment choices. We develop large-sample approximations to statistical treatment assignment problems in both randomized experiments and observational data settings in which treatment effects are identified. We derive a local asymptotic minmax regret bound on social welfare, and a local asymptotic risk bound for a two-point loss function. We show that certain natural treatment assignment rules attain these bounds.
Keywords: treatment effect; statistical decision theory; minmax regret; treatment assignment rules (search for similar items in EconPapers)
JEL-codes: C1 (search for similar items in EconPapers)
Date: 2006-08-08
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/1173/1/MPRA_paper_1173.pdf original version (application/pdf)
Related works:
Journal Article: Asymptotics for Statistical Treatment Rules (2009) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:1173
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().