EconPapers    
Economics at your fingertips  
 

Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach

Achim Klein, Diemo Urbig and S. Kirn

MPRA Paper from University Library of Munich, Germany

Abstract: Introduction. The objects of investigation of this work are micro-level behaviors in stock markets. We aim at better understanding which strategies of market participants drive stock markets. The problem is that micro-level data from real stock markets are largely unobservable. We take an estimation perspective to obtain daily time series of fractions of chartists and fundamentalists among market participants. We estimate the heterogeneous agent-based financial market model introduced by Lux and Marchesi [1] to the S&P 500. This model has more realistic time series properties compared to less complex econometric and other agent-based models. Such kinds of models have a rather complex dependency between micro and macro parameters that have to be mapped to empirical data by the estimation method. This poses heavy computational burdens. Our contribution to this field is a new method for indirectly estimating time-varying micro-parameters of highly complex agent-based models at high frequency. Related work. Due to the high complexity, few authors have published on this topic to date (e.g., [2], [3], and [4]). Recent approaches in directly estimating agent-based models are restricted to simpler models, make simplifying assumptions on the estimation procedure, estimate only non-time varying parameters, or estimate only low frequency time series. Approach and computational methods. The indirect estimation method we propose is based on estimating the inverse model of a rich agent-based model that derives realistic macro market behavior from heterogeneous market participants’ behaviors. Applying the inverse model, which maps macro parameters back to micro parameters, to widely available macro-level financial market data, allows for estimating time series of aggregated real world micro-level strategy data at daily frequency. To estimate the inverse model in the first place, a neural network approach is used, as it allows for a large degree of freedom concerning the structure of the mapping to be represented by the neural network. As basis for learning the mapping, micro and macro time series of the market model are generated artificially using a multi-agent simulation based on RePast [5]. After applying several pre-processing and smoothing methods to these time series, a feed-forward multilayer perceptron is trained using a variant of the Levenberg-Marquardt algorithm combined with Bayesian regularization [6]. Finally, the trained network is applied to the S&P 500 to estimate daily time series of fractions of strategies used by market participants. Results. The main contribution of this work is a model-free indirect estimation approach. It allows estimating micro-parameter time series of the underlying agent-based model of high complexity at high frequency. No simplifying assumptions concerning the model or the estimation process have to be applied. Our results also contribute to the understanding of theoretical models. By investigating fundamental depen¬den¬cies in the Lux and Marchesi model by means of sensitivity analysis of the resulting neural network inverse model, price volatility is found to be a major driver. This provides additional support to findings in [1]. Some face validity for concrete estimation results obtained from the S&P 500 is shown by comparing to results of Boswijk et al. [3]. This is the work which comes closest to our approach, albeit their model is simpler and estimation frequency is yearly. We find support for Boswijk et al.’s key finding of a large fraction of chartists during the end of 1990s price bubble in technology stocks. Eventually, our work contributes to understanding what kind of micro-level behaviors drive stock markets. Analyzing correlations of our estimation results to historic market events, we find the fraction of chartists being large at times of crises, crashes, and bubbles. See also www.whodrivesthemarket.com for some continuously updated results.

Keywords: stock market; heterogeneous agent-based models; indirect estimation; inverse model; trading strategies; chartists; fundamentalists; neural networks (search for similar items in EconPapers)
JEL-codes: C15 C32 C45 C81 G12 (search for similar items in EconPapers)
Date: 2008-06-24
New Economics Papers: this item is included in nep-cmp and nep-ecm
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://mpra.ub.uni-muenchen.de/14433/1/MPRA_paper_14433.pdf original version (application/pdf)
https://mpra.ub.uni-muenchen.de/14575/1/MPRA_paper_14575.pdf revised version (application/pdf)
https://mpra.ub.uni-muenchen.de/14580/1/MPRA_paper_14580.pdf revised version (application/pdf)

Related works:
Working Paper: Who Drives the Market? Estimating a Heterogeneous Agent-based Financial Market Model Using a Neural Network Approach (2011) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:14433

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

 
Page updated 2024-12-28
Handle: RePEc:pra:mprapa:14433