Economics at your fingertips  

Precautionary Learning and Inflationary Biases

Chetan Dave () and James Feigenbaum ()

MPRA Paper from University Library of Munich, Germany

Abstract: Recursive least squares learning is a central concept employed in selecting amongst competing outcomes of dynamic stochastic economic models. In employing least squares estimators, such learning relies on the assumption of a symmetric loss function defined over estimation errors. Within a statistical decision making context, this loss function can be understood as a second order approximation to a von-Neumann Morgenstern utility function. This paper considers instead the implications for adaptive learning of a third order approximation. The resulting asymmetry leads the estimator to put more weight on avoiding mistakes in one direction as opposed to the other. As a precaution against making a more costly mistake, a statistician biases his estimates in the less costly direction by an amount proportional to the variance of the estimate. We investigate how this precautionary bias will affect learning dynamics in a model of inflationary biases. In particular we find that it is possible to maintain a lower long run inflation rate than could be obtained in a time consistent rational expectations equilibrium.

Keywords: Least squares learning; time inconsistency; statistical decision making (search for similar items in EconPapers)
JEL-codes: C44 E6 (search for similar items in EconPapers)
Date: 2007-10-21
References: View references in EconPapers View complete reference list from CitEc
Citations: Track citations by RSS feed

Downloads: (external link) original version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Access Statistics for this paper

More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().

Page updated 2022-03-27
Handle: RePEc:pra:mprapa:14876