On the Use of Formative Measurement Specifications in Structural Equation Modeling: A Monte Carlo Simulation Study to Compare Covariance-Based and Partial Least Squares Model Estimation Methodologies
Christian Ringle,
Oliver Götz,
Martin Wetzels and
Bradley Wilson
MPRA Paper from University Library of Munich, Germany
Abstract:
The broader goal of this paper is to provide social researchers with some analytical guidelines when investigating structural equation models (SEM) with predominantly a formative specification. This research is the first to investigate the robustness and precision of parameter estimates of a formative SEM specification. Two distinctive scenarios (normal and non-normal data scenarios) are compared with the aid of a Monte Carlo simulation study for various covariance-based structural equation modeling (CBSEM) estimators and various partial least squares path modeling (PLS-PM) weighting schemes. Thus, this research is also one of the first to compare CBSEM and PLS-PM within the same simulation study. We establish that the maximum likelihood (ML) covariance-based discrepancy function provides accurate and robust parameter estimates for the formative SEM model under investigation when the methodological assumptions are met (e.g., adequate sample size, distributional assumptions, etc.). Under these conditions, ML-CBSEM outperforms PLS-PM. We also demonstrate that the accuracy and robustness of CBSEM decreases considerably when methodological requirements are violated, whereas PLS-PM results remain comparatively robust, e.g. irrespective of the data distribution. These findings are important for researchers and practitioners when having to choose between CBSEM and PLS-PM methodologies to estimate formative SEM in their particular research situation.
Keywords: PLS; path modeling; covariance structure analysis; structural equation modeling; formative measurement; simulation study (search for similar items in EconPapers)
JEL-codes: C10 C15 C30 C51 (search for similar items in EconPapers)
Date: 2009
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/15390/1/MPRA_paper_15390.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:15390
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().