Modelling and forecasting volatility of East Asian Newly Industrialized Countries and Japan stock markets with non-linear models
Francesco Guidi
MPRA Paper from University Library of Munich, Germany
Abstract:
This paper explores the forecasting performances of several non-linear models, namely GARCH, EGARCH, APARCH used with three distributions, namely the Gaussian normal, the Student-t and Generalized Error Distribution (GED). In order to evaluate the performance of the competing models we used the standard loss functions that is the Root Mean Squared Error, Mean Absolute Error, Mean Absolute Percentage Error and the Theil Inequality Coefficient. Our result show that the asymmetric GARCH family models are generally the best for forecasting NICs indices. We also find that both Root Mean Squared Error and Mean Absolute Error forecast statistic measures tend to choose models that were estimated assuming the normal distribution, while the other two remaining forecast measures privilege models with t-student and GED distribution.
Keywords: GARCH; Volatility forecasting; forecast evaluation. (search for similar items in EconPapers)
JEL-codes: C22 G15 (search for similar items in EconPapers)
Date: 2010-01
New Economics Papers: this item is included in nep-fmk, nep-for and nep-sea
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/19851/1/MPRA_paper_19851.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:19851
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().