QML estimation of a class of multivariate GARCH models without moment conditions on the observed process
Christian Francq and
Jean-Michel Zakoian
MPRA Paper from University Library of Munich, Germany
Abstract:
We establish the strong consistency and asymptotic normality of the quasi-maximum likelihood estimator of the parameters of a class of multivariate GARCH processes. The conditions are mild and coincide with the minimal ones in the univariate case. In particular, contrary to the current literature on the estimation of multivariate GARCH models, no moment assumption is made on the observed process. Instead, we require strict stationarity, for which a necessary and sufficient condition is established.
Keywords: Asymptotic Normality; Conditional Heteroskedasticity; Consistency; Constant Conditional Correlation; Multivariate GARCH; Quasi Maximum Likelihood Estimation; Strict Stationarity Condition (search for similar items in EconPapers)
JEL-codes: C01 C13 C32 (search for similar items in EconPapers)
Date: 2010-02
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/20779/1/MPRA_paper_20779.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:20779
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().