Higher-order volatility: time series
Alexander Carey
MPRA Paper from University Library of Munich, Germany
Abstract:
This paper presents time-series of higher-order volatilities for the S&P 500 and EURUSD. We use a 3-volatility model which accounts for non-normal skewness and kurtosis. The volatilities control the level, slope and curvature of the Black-Scholes implied volatility smile; accordingly we term them "base", "skew" and "smile" volatility. We define instantaneous skewness and kurtosis as simple ratios of the volatilities, and show that when these metrics are held constant, the model is relative sticky-delta. For the S&P 500 in 2008, skew and smile volatility are highly correlated with base volatility. Instantaneous skewness and kurtosis are remarkably stable, including over the market dislocation of the last four months of the year. Daily changes in all three volatilities are correlated with daily returns. For EURUSD in 2006, base and smile volatility are closely correlated, but in contrast to the equity case, skew volatility is independent and changes sign. This change in sign appears to provide advance warning of the two major market moves of the year. However, daily changes in the volatilities are uncorrelated with daily returns.
Keywords: higher-order volatility; time series; S&P 500; EURUSD (search for similar items in EconPapers)
JEL-codes: G13 (search for similar items in EconPapers)
Date: 2010-01-12
New Economics Papers: this item is included in nep-ets and nep-mst
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/21087/1/MPRA_paper_21087.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:21087
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().