Tolerance, Cooperation, and Equilibrium Restoration in Repeated Games
Romeo Balanquit
MPRA Paper from University Library of Munich, Germany
Abstract:
This study shows that in a two-player infinitely repeated game where one is patient and the other is impatient, Pareto-superior subgame perfect equilibrium can be achieved. An impatient player in this paper is depicted as someone who can truly destroy the possibility of attaining any feasible and individually rational outcome that is supported in equilibrium in repeated games, as asserted by the Folk Theorem. In this scenario, the main ingredient for the restoration of equilibrium is to introduce the notion of tolerant trigger strategy. Consequently, the use of the typical trigger strategy is abandoned since it ceases to be efficient as it only brings automatically the game to its punishment path, therefore eliminating the possibility of extracting other feasible equilibria. I provide a simple characterization of perfect equilibrium payoffs under this scenario and show that cooperative outcome can be approximated.
Keywords: infinitely-repeated games; tolerant trigger strategy (search for similar items in EconPapers)
JEL-codes: C70 C73 (search for similar items in EconPapers)
Date: 2010-03-25
New Economics Papers: this item is included in nep-gth
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/21877/1/MPRA_paper_21877.pdf original version (application/pdf)
https://mpra.ub.uni-muenchen.de/28990/2/MPRA_paper_28990.pdf revised version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:21877
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().