Discretization of highly persistent correlated AR(1) shocks
Damba Lkhagvasuren and
Ragchaasuren Galindev
MPRA Paper from University Library of Munich, Germany
Abstract:
The finite state Markov-Chain approximation method developed by Tauchen (1986) and Tauchen and Hussey (1991) is widely used in economics, finance and econometrics in solving for functional equations where state variables follow an autoregressive process. For highly persistent processes, the method requires a large number of discrete values for the state variables to produce close approximations which leads to an undesirable reduction in computational speed, especially in a multidimensional case. This paper proposes an alternative method of discretizing vector autoregressions. This method can be treated as an extension of Rouwenhorst's (1995) method which, according to our experiments, outperforms the existing methods in the scalar case for highly persistent processes. The new method works well as an approximation that is much more robust to the number of discrete values for a wide range of the parameter space.
Keywords: Finite State Markov-Chain Approximation; Discretization of Multivariate Autoregressive Processes; Transition Matrix; Numerical Methods; Value Function Iteration; the Rouwenhorst method; VAR (search for similar items in EconPapers)
JEL-codes: C60 J60 (search for similar items in EconPapers)
Date: 2008-11-23
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/22523/1/MPRA_paper_22523.pdf original version (application/pdf)
Related works:
Journal Article: Discretization of highly persistent correlated AR(1) shocks (2010) 
Working Paper: Discretization of Highly-Persistent Correlated AR(1) Shocks (2008)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:22523
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().