Efficient Estimation of the Parameter Path in Unstable Time Series Models
Ulrich Mueller and
Philippe-Emmanuel Petalas
MPRA Paper from University Library of Munich, Germany
Abstract:
The paper investigates asymptotically efficient inference in general likelihood models with time varying parameters. Parameter path estimators and tests of parameter constancy are evaluated by their weighted average risk and weighted average power, respectively. The weight function is proportional to the distribution of a Gaussian process, and focusses on local parameter instabilities that cannot be detected with certainty even in the limit. It is shown that asymptotically, the sample information about the parameter path is efficiently summarized by a Gaussian pseudo model. This approximation leads to computationally convenient formulas for efficient path estimators and test statistics, and unifies the theory of stability testing and parameter path estimation.
Keywords: Time Varying Parameters; Non-linear Non-Gaussian Smoothing; Weighted Average Risk; Weighted Average Power; Posterior Approximation; Contiguity (search for similar items in EconPapers)
JEL-codes: C22 (search for similar items in EconPapers)
Date: 2007-03
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://mpra.ub.uni-muenchen.de/2260/1/MPRA_paper_2260.pdf original version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:pra:mprapa:2260
Access Statistics for this paper
More papers in MPRA Paper from University Library of Munich, Germany Ludwigstraße 33, D-80539 Munich, Germany. Contact information at EDIRC.
Bibliographic data for series maintained by Joachim Winter ().